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The existence of a new time scale t = d(L2/kN)* ,  where (T, k ,  L and N are the 
Prandtl number, the thermometric conductivity, a typical length and the 
Brunt-Vaisak frequency, respectively, is clarified for a temperature adjustment 
process of a Boussinesq fluid in a circular cylinder. 

1. Introduction and summary 
Let us consider a Boussinesq fluid at  rest in a circular cylinder whose axis of 

symmetry is parallel to the gravitational force. The temperature at the top of the 
cylinder is higher than that at  the bottom to make the temperature distribution 
thermally stable. The material of the cylinder has a large thermometric conducti- 
vity so that any change of the top or the bottom temperature is relaxed (within 
the material) in a time small compared with the time scale of hydrodynamical 
processes. At a certain instant, the top and the bottom temperatures are changed 
abruptly by small amounts of equal magnitude but opposite sign to change 
the temperature distribution of the side wall. Our problem is to study the re- 
sponse of the fluid to this abrupt change of the wall temperature, The linearized 
theory is applied for the case where the Prandtl number is of order unity. 

There exists an analogy between dynamical processes in a rotating fluid and 
those in a stratified fluid (Veronis 1970). We are already familiar with the spin- 
down process in a rotating fluid (Greenspan & Howard 1963), in which a meri- 
dional circulation pumped by the Ekman boundary layer redistributes the 
angular momentum. In  this paper, we want to demonstrate the existence of a 
meridional circulation pumped by a side-wall boundary layer; this meridional 
circulation redistributes the fluid temperature to bring about a new state of 
stratification. This gives us a process in a stratified fluid which is analogous to the 
spin-down process in a rotating fluid. 

Before going directly to the discussion of the mathematical treatment, let US 

consider relevant physical processes. A quasi-steady side-wall boundary layer is 
formed within a few periods of the Brunt-VaisBlii oscillation after the onset of 
the temperature change of the wall. The thickness E of the boundary layer is 
the hybrid thermal and viscous diffusion length for the time scale of the Brunt- 
Vaisala oscillation: 

8 = d ( k / f l ) * ,  (1) 
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where k is the thermometric conductivity, r~ the Prandtl number and N the 
Brunt-Vaisda frequency. There is a vertical flow in this boundary layer because 
of the excess buoyancy force due to the change in the wall temperature. This 
buoyancy force is balanced by the viscous force: 

P I  g Po uk8/@, (2) 

where PI is the excess density corresponding to the change of the wall tempera- 
ture, g the gravitational acceleration, the vertical velocity, po the standard 
density, and carets refer to the boundary layer. It is interesting that the structure 
of our boundary layer is the same as that of the buoyancy layer in the rotating 
stratified fluid (Barcilon & Pedlosky 1967). Because of the continuity of the flow, 
this vertical flow in the boundary layer pumps a meridional circulationin the non- 
conducting inviscid region outside the boundary layer. The meridional velocity 
is of the order of the velocity of the boundary-layer flow scaled down by the ratio 
of the boundary-layer thickness to the typical length L of the cylinder: 

q N @/L. ( 3) 

This meridional circulation transports the thermal energy of each of the fluid 
particles. Because of the basic thermal stratification, this convection brings about 
a new state of stratification. Let us consider, for example, the case in which the 
wall temperature is changed so that the stratification is increased, that is, the 
case inwhichthe top temperature is raised and the bottom temperatureis lowered. 
An upward flow occurs in the upper half of the side-wall boundary layer and a 
downward flow in the lower half. This boundary-layer flow sucks up the outer 
fluid and induces a meridional circulation flowing downward in the upper half and 
upward in the lower half of the main body of the non-conducting inviscid region. 
The coupling of this meridional circulation with the basic stratification increases 
the overall stratification. This process is consistent with the change in the side- 
wall temperature. The time rate of change of the fluid temperature TI by this 
thermal convection is 

TI/t 4/39 (4) 

where t is the time scale of this process and /3 is the basic temperature gradient. 
The expression for t given in the abstract is readily obtained from these relations 
by taking into account the usual density-temperature relation of a Boussinesq 
fluid, 

P I  Po"%:, (5) 

where a is the coefficient of thermal expansion, the relatibn 

TI, 

between the temperature perturbations inside and outside the boundary layer, 
and the expression for the Brunt-Viiisala frequency, 

N = ("g/3)*. 

The validity of our description of the physical processes depends on the exis- 
tence of the side-wall boundary layer being established within the time scale t .  
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E = €/L = d (k/L2N)f < 1. 
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This requires the boundary layer to be thin compared with the typical length 
of the cylinder, i.e. 

( 8 )  

It is interesting that E is also the ratio of our time scale to the thermal diffusion 
time L2/k. Thus, our time scale is small compared with the thermal diffusion 
time. 

2. Basic equations 

Boussinesq fluid are 
In  cylindrical co-ordinates the basic equations of a meridional flow in a 

where 

r and z being the radial and vertical co-ordinates, respectively, and qr and qB 
the corresponding velocity components. The basic stationary state is 

TB = To( 1 + Pz/T,). 

T = TB -I- TI, 

(13) 

The perturbation on the stationary state is expressed as 

(14) 

with the meridional velocity itself taken as a perturbation. Equations (9) and 
(10) are derived by substituting these expressions into the original basic equa- 
tions, neglecting the second-order terms with respect to the perturbation, and 
eliminating the pressure from the resulting equations. 

The initial and boundary conditions are as follows: 

T I =  0, $ =  0 for 0 < z  < L, r < POL, t Q 0, (15@,b)  

TI = 2KTo(z/L-+), $ = a@/ar = 0 for O G  z G L, r = 7oL, t > 0, (16a,b)  

T,=+T,K, ~ # = i ? $ / a z = O  for z = ( $ + # ) L ,  rGFoL, t > 0 ,  (17a,b)  

where Po is the ratio of the radius to the height of the cylinder, and K designates 
a perturbation on the temperature gradient of the wall. Let us introduce the 
following resealing, in accordance with the physical considerations above: 

27-2 

Tl = TOPl, (r,  z )  = L(P, z”). I 
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The substitution of these transformations into (9) and (10) leads to the following: 

3. Method of solution 
Let us introduce the boundary-layer decomposition of the physical quantities: 

PI = P + P ,  $ = $ I + $ )  (21) 

where the suffix 1 refers to the inner non-conducting inviscid region and the 
caret t o  the side-wall boundary layer. The boundary-layer quantities depend 
on the boundary-layer variable S instead of on F, where 

F = 8, - ES. (22) 

Substitution of this decomposition into (19) and (20) and retention of the lowest 
order terms with respect to E leads to 

A 

a3$1as3 = - T, a P p  = 1%. (24a, 6 )  

The substitution of (21) and of the solution of (24) into (16) gives us the side- 
wall boundary condition for the inner non-conducting inviscid flow; 

where the suffix w refers to the side wall. 
The solution of (23) gives us 

T I  = P'6(2", Z), $1 = $L(Z, 2) ? /Po .  (26) 

(27 ) 

The substitution of (26) into ( 2 3 6 )  gives us 

a$$%+ (2'z/F0) $& = 0. 

The initial value of pm is obtained from the fact that 5?I vanishes at the initial 
instant, see (15a). Hence 

It is interesting that the initial value of -&I is not zero, which contradicts (156). 
This is due to the fact that our boundary-layer decomposition is meaningful 
only after the establishment of the quasi-steady side-wall boundary layer. 
Thus, the initial instant for the inner flow is a few periods of the Brunt-Vaisala 
oscillation after the real initial instant. During this time the meridional circula- 
tion has already been established by the pumping mechanism of the side-wall 
boundary layer. This situation is also analogous to that in the spin-down process 
(Greenspan & Howard 1963). 

= 2iK(Z- 4). (28) 
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The solution of (27) subject to (28) g' ives us 

42 1 

The above solution justifies the physical assumptions of 3 1. 

4. Concluding remarks 
As is shown in (23), and in analogy with the Taylor-Proudman column in the 

rotating homogeneous fluid, our perturbation is independent of the horizontal 
co-ordinates. This situation does not change as long as the density is a function 
of temperature only. Because our boundary-layer variables are local with respect 
to the vertical co-ordinates, we believe that our conclusion has a wide range of 
applicability for the temperature adjustment process in the generally stratified 
fluid. Finally, the matching of the inner meridional circulation and of the inner 
temperature field to the boundary conditions on the horizontal walls is achieved 
via the horizontal boundary layers. However, because the existence of these 
horizontal layers does not affect our conclusions, we omit the discussion of these 
layers. 

Note added in proof. After the submission of our paper to the Journal of 
Fluid Mechanics, we had a chance to read a paper by Walin (1971). He gave 
a general treatment of the temperature adjustment process of a Boussinesq 
fluid with boundaries of finite conductance. Because our side wall is a perfect 
conductor, the effect of the present estimate of the time scale is to complement 
Walin's estimates. 
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